
- What is cohort analysis? (A jargon-free, straightforward description)
- How can ecommerce marketers use it?
- Eight exemplary (ecommerce marketing) questions it can answer
Coffee ready â âŠ? Let's begin.
What is cohort analysis?
How can ecommerce marketers use it?
- What to define a cohort by: As well as time specific (e.g.âdate of first orderâ or âdate subscribedâ), other examples include grouping customers by demographics (e.g. gender), campaign source, channel source or lifecycle stage.
- Which metric to apply to this cohort âi.e. the customer/contact activity you want to measure: This could be: âTotal revenueâ, âCustomers repeatedâ, âTotal ordersâ, âAverage order valueâ, and so on.
- The time span in which to measure the analysis: We tend to look at activity on a monthly basis, covering 6-12 months.

Eight exemplary questions
1) Is my new marketing campaign converting leads into customers?
You can do this by grouping your contacts according to, for example, âdate of first visitâ, and then looking at a metric such as âcustomers gainedâ and apply a time span of, say, six months. The report will then show you, month on month, the number of customers gained from that initial group of contacts.

In this example, we can see that this brandâs acquisition strategy is strong, with an impressive number of customers converting in the first month for pretty much every cohort.
That said, we can also see that the April 17 cohort converted slightly less customers within its first month than the following cohorts (i.e. those who first visited the site in May, June, July 17 etcâŠ).
This test is a great way to analyse whether or not, each month, you are managing to convert more customers on their initial visit (or, if youâve implemented a website change that isnât working properly, less customers).
This type of cohort analysis can also reveal how long it takes your customer cohorts to convert; for example, if you're a luxury retailer with contacts that like to really think their purchases through, you may notice no conversion in month 1, but a large amount of conversion in month 2,3,4,5 or 6.
|
2) Do I need to invest more in retention?
To discover whether or not your brand needs to invest more in its customer retention strategy, you could group a cohort by the week/month they were first acquired, and then measure the revenue made from that group over the following 6-12 months.
On a granular level, changes within the spending habits of each cohort month on month can be identified using a test such as this.
For example, looking at the above data, those who placed their first order in April17 went on to generate a small amount in month 2, but bounced back in month 3,4 and 5, showing they are still very much active:
Looking at the analysis more broadly, the May 17 cohort has a higher lifetime value (LTV) than April 2017. This could be indicative of a particular campaign, event or product introduced in May, which resulted in a spike in spending habits and an increased level of customer loyalty.
This retention test could also be carried out using the same cohort (âdate of first orderâ) but the metric ârepeat customersâ.
N.b.If you find that the total revenue month on month (or number of repeat orders) does not increase at all, it may be that you could be doing more to keep new customers engaged following their first purchase, for example, by implementing a post-purchase strategy to get them shopping again.
Bonus point: To take this test (or any test) up a notch, you can filter your cohorts according to specific criteria (for example, all of your VIP customers) and then run the same test.
|
3) Is each stage of the customer lifecycle being nurtured enough?
On the back of the point above, you can actually define your cohorts by lifecycle stage to spot patterns in how contacts interact with your brand before they become (e.g.) loyal customers or, conversely, lapsed.
For this test, using a time frame of 12-24 months is best, as it takes around eight months of no activity for a customer to be deemed âat-riskâ of lapsing.
This test should give you an idea of how you can pay more attention to certain stages of the customer journey to prevent customers from becoming disengaged.
For example, by grouping customers by âlifecycle stageâ and using the metric âtotal revenueâ over a time span of 12 months, you might find that, for active customers, the first six months after being acquired is when they are the most valuable. Or, for your at-risk cohort of customers, around month seven is when they tend to stop shopping completely.
Other good metrics to use for this test include: âaverage order valueâ and âcustomers repeatedâ. The example below groups customers by âlifecycle stageâ, using the metric âaverage order valueâ and a time span of 24 months.
... Whereas the average order value of those âactiveâ (orange) steadily increases, the AOV for those âlapsedâ (blue) becomes completely stagnant around month 13: Ultimately, cohort analysis can highlight more subtle improvements or deterioration in your lifecycle marketing, which would manifest as incremental, but consistent, changes to (e.g.) that cohortâs lifetime-value.
4) What are the long-term purchasing habits of different demographic segments?
Your cohort doesnât always need to be defined by a specific action or event; it can also be based on demographic information, such as gender or country.
By grouping customers by (e.g.) âcountryâ, and measuring the âtotal revenueâ made each month in that location, you can see whether thereâs a big difference in the purchasing habits of, letâs say, France and Belgium.
Using this information, you can learn country-specific elements about the lifetime value of customers.
5) Which channels are driving the best results?
Next up comes social channels. Using cohort analysis, you can group cohorts by the medium of their first visit, and see which channels:
- Generate a lot of one-off shoppers
- Generate quality, repeat customers
- Generate customers with a very high lifetime value
The below example groups customers by âfirst visit mediumâ, using the metric âtotal revenueâ (within a time frame of six months).
In this example, we can see that, whilst the âsearchâ cohort is the biggest in size (and is generating the most revenue in total), customers within the âsocialâ cohort (which is much smaller) have a high lifetime value. In-turn, this information can help marketers understand which channels are best to invest in for long-term success (and which are bleeding them dry with little to show for it). |
6) Do I have many seasonal shoppers?
By grouping your customers by âdate of first orderâ and using a metric that looks at either the âtotal ordersâ, âtotal revenueâ or âcustomers repeatedâ, marketers can also identify seasonal shoppers who shop around November but then disappear for the next eleven months.
Another way to find out who your gift shoppers are is to measure the number of customers gained in December compared to the number of customers gained in, for example, March and see if it makes a big difference.
If you find you do have a large cohort of gift-shoppers that spend a lot with you during the festive season but then drop-off, you could invest in a January/February themed campaign to keep them around.
7) Are those subscribed spending more than those unsubscribed?
You invest a lot of time and energy in your newsletter pop-up asking for sign-ups, and even more in making your newsletters awesome, but are your subscribers actually spending more than those unsubscribed?
Define your cohort by âsubscriber statusâ and use the metric âtotal revenueâ or âorders madeâ to find out.
The result might be that those subscribed *do* stay highly engaged, which will affirm the value of your broadcast emails. It might also show some changes, suggesting certain monthly newsletters do better than others.
If your subscribers seem to be not spending much at all, that doesnât necessarily mean you shouldnât be sending newsletters; it might be indicative of poor content that needs revising, or frequency issues, or might just show that your newsletters are simply a brand awareness exercise that keeps people aware of who you are and the products you offer. After all, in 2017 content is a long-term asset to have.
8) Different stores, different results?
Last but not least comes the question of whether different stores are producing different results for the overall company.
By breaking down your customers by store, you can figure out what the lifetime value is per particular shop. This could be offline, or for different websites; for example, your .fr store may be performing way better than your .uk store. This analysis can also be used to see different offline results for different stores you have within the same country.
Next level analysis đ€
If you wanted to carry out smart cohort analysis at an even more granular level, you can.
Using the Ometria platform, you can filter your contacts by âpurchase activityâ and select a specific product in order to see the average LTV of its customers over time, and perhaps compare it to another product.
For example, below is an analysis of a) coat shoppers and b) jeans shoppers, revealing that, overall, jeans tend to have a higher LTV.
a)
b)
Got any of your own questions?
Ultimately, cohort analysis is a fantastic way to look back and analyse the performance of your brand over time. Once you have carried out an analysis, you can export a cohort report to look at and share in more depth.
We understand that cohort analysis is difficult to get your head around, so if you have any of your own questions please donât hesitate to get in touch or drop up a comment in the section below.
In the meantime, hereâs a clip from Cian Weeresinghe, CMO at Secret Escapes, talking about cohort analysis at our Lifecycle 2015 conference (FYI, to sign up for this yearâs event, just click here):